534 research outputs found

    Quasar: A Programming Framework for Rapid Prototyping

    Get PDF
    We present a new programming framework, Quasar, which facilitates GPU programming. Our high-level programming language relieves the developer of all implementation details such that he can focus on the algorithm and the required accuracy. The proposed programming framework consists of a simple high-level programming language, an advanced compiler system, a runtime system and IDE. The Quasar language is a high level scripting language with an easy to learn syntax similar to python and MATLAB. This makes Quasar well suited for fast development and prototyping. A Quasar program is first processed by a front-end compiler that automatically detects serial and parallel loops that could be accelerated by heterogeneous hardware. In a second compilation phase, a number of back-end compilers processes the output of the front-end compiler, thus generating C++, OpenCL or CUDA code. Based on the generated code the runtime system can dynamically switch between CPU and GPU. This automatic scheduling at runtime is done by analyzing the load of all devices, the memory transfer cost and the complexity of the task. This way, the programmer is relieved from complicated implementation issues that are common for programming heterogeneous hardware. We validated the use of Quasar on a number of complex image processing and computer vision algorithms. These programs range from denoising to automated image segmentation applications. Using Quasar we get speed-up factors of 4 to over 60, depending on the application. All results were achieved using an NVIDIA GeForce M750

    Deciding Disputes: Factors That Guide Chinese Courts in the Adjudication of Rural Responsibility Contract Disputes

    Get PDF
    Post-silicon validation and debug, or ensuring that software executes correctly on the silicon of a multi-processor system-on-chip (MPSOC) is complicated, as it involves checking global properties that are distributed on the chip. In this paper we define an architecture to non-intrusively observe global properties at run time using distributed monitors. The architecture enables to perform actions when a property holds, such as stopping (part of) the system for inspection. We apply this architecture to the problem of software races that result in incorrect communication between concurrent tasks on different processors. In a case study, where we implemented monitors, event distribution, and instruments to stop communication between intellectual property (IP) blocks, we demonstrate that these races can be detected and classified as timing violations or as FIFO protocol violations.©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Erik Larsson, Bart Vermeulen and Kees Goossens, A Distributed Architecture to Check Global Properties for Post-Silicon Debug, 2010, IEEE European Test Symposium (ETS'10), Prague, Czech Republic, May 24-28, 2010.</p

    Detecting adversarial manipulation using inductive Venn-ABERS predictors

    Get PDF
    Inductive Venn-ABERS predictors (IVAPs) are a type of probabilistic predictors with the theoretical guarantee that their predictions are perfectly calibrated. In this paper, we propose to exploit this calibration property for the detection of adversarial examples in binary classification tasks. By rejecting predictions if the uncertainty of the IVAP is too high, we obtain an algorithm that is both accurate on the original test set and resistant to adversarial examples. This robustness is observed on adversarials for the underlying model as well as adversarials that were generated by taking the IVAP into account. The method appears to offer competitive robustness compared to the state-of-the-art in adversarial defense yet it is computationally much more tractable

    Detecting adversarial examples with inductive Venn-ABERS predictors

    Get PDF
    Inductive Venn-ABERS predictors (IVAPs) are a type of probabilistic predictors with the theoretical guarantee that their predictions are perfectly calibrated. We propose to exploit this calibration property for the detection of adversarial examples in binary classification tasks. By rejecting predictions if the uncertainty of the IVAP is too high, we obtain an algorithm that is both accurate on the original test set and significantly more robust to adversarial examples. The method appears to be competitive to the state of the art in adversarial defense, both in terms of robustness as well as scalabilit

    Complex wavelet based demosaicing for use in digital still cameras

    Get PDF

    Point triangulation through polyhedron collapse using the l∞ norm

    Get PDF
    Multi-camera triangulation of feature points based on a minimisation of the overall l(2) reprojection error can get stuck in suboptimal local minima or require slow global optimisation. For this reason, researchers have proposed optimising the l(infinity) norm of the l(2) single view reprojection errors, which avoids the problem of local minima entirely. In this paper we present a novel method for l(infinity) triangulation that minimizes the l(infinity) norm of the l(infinity) reprojection errors: this apparently small difference leads to a much faster but equally accurate solution which is related to the MLE under the assumption of uniform noise. The proposed method adopts a new optimisation strategy based on solving simple quadratic equations. This stands in contrast with the fastest existing methods, which solve a sequence of more complex auxiliary Linear Programming or Second Order Cone Problems. The proposed algorithm performs well: for triangulation, it achieves the same accuracy as existing techniques while executing faster and being straightforward to implement

    Multiresolution image models and estimation techniques

    Get PDF

    Adaptive non-local means filtering of images corrupted by colored noise

    Get PDF

    A recursive scheme for computing autocorrelation functions of decimated complex wavelet subbands

    Get PDF
    This paper deals with the problem of the exact computation of the autocorrelation function of a real or complex discrete wavelet subband of a signal, when the autocorrelation function (or Power Spectral Density, PSD) of the signal in the time domain (or spatial domain) is either known or estimated using a separate technique. The solution to this problem allows us to couple time domain noise estimation techniques to wavelet domain denoising algorithms, which is crucial for the development of blind wavelet-based denoising techniques. Specifically, we investigate the Dual-Tree complex wavelet transform (DT-CWT), which has a good directional selectivity in 2-D and 3-D, is approximately shift-invariant, and yields better denoising results than a discrete wavelet transform (DWT). The proposed scheme gives an analytical relationship between the PSD of the input signal/image and the PSD of each individual real/complex wavelet subband which is very useful for future developments. We also show that a more general technique, that relies on Monte-Carlo simulations, requires a large number of input samples for a reliable estimate, while the proposed technique does not suffer from this problem
    • …
    corecore